EFFECT OF RIGHT BANK OUTFALL DRAIN (RBOD) ON BIODIVERSITY OF THE WETLANDS OF HALEJI WETLAND COMPLEX, SINDH

M Zaheer Khan, *Tanveer Jabeen, S Ali Ghalib, Saima Siddiqui, M Safdar Alvi, Iqbal Saeed Khan, Ghazala Yasmeen, Afsheen Zehra, Fozia Tabbassum, Babar Hussain, and Raheela Sharmeen Wildlife Section, Department of Zoology, University of Karachi, Karachi-75270

ABSTRACT

In the present study, the effects of Right Bank Outfall Drain (RBOD) on the fauna of the wetlands were studied and inventories of the fauna and the flora were prepared. During the study period from 2007 – 2012, water samples taken from three sampling sites from the study areas viz., RBOD at Gharo, near Haleji Lake and near Keenjhar Lake were analyzed for physico-chemical parameters, pesticides and heavy metals. The mean salinity value of all sampling sites was recorded. RBOD at Gharo and RBOD near Keenjhar Lake showed high salinity value as per limit of World Health Organization standard. Water samples taken from RBOD near Keenjhar Lake showed pesticide OC compounds below the Maximum Acceptable Concentration (MAC). However, no serious adverse effects of environmental pollution were detected on the aquatic biodiversity except for some minor toxic effects due to the presence of heavy metals in water. Regarding biodiversity, two species of protozoans, 104 species of arthropods, 23 species of zooplanktons, 13 species of molluscs, 228 species of birds, 28 species of mammals, 31 species of reptiles, 2 species of amphibians and 59 species of fishes were recorded from the study areas. The biodiversity of RBOD is in decline mainly due to hunting, capturing, habitat destruction, cutting of trees, commercial fishing, anthropogenic activities and growing human population around the RBOD area.

Keywords: Right bank outfall drain, biodiversity of Sindh, environmental effects, threatened species.

INTRODUCTION

The province of Sindh forms the lower Indus basin and lies between 23° 35 and 28° 30 northern latitude and 66° 42' and 71^0 10' east longitude (Khan *et al.*, 2014). The different ecosystems of Sindh include wetlands, deserts, river, mangrove forests, agricultural and coastal areas. The River Indus act as a key source of water in Pakistan and majority of the population of Sindh depends on this River. There are many canals and barrages coming out of this River and giving lives to wetland birds all over the Sindh (Yahya, 2007). Sindh estuarine and coastal wetlands serve as nursery grounds for the lobsters, shrimps and fish. Each year during the migration season, over one million of water birds belonging to 108 species, visit Sindh wetlands (Khan, 2006). Thatta is an important district of Sindh Province due to its wetlands, Wildlife Protected Areas and Cultural Heritage Sites. Right Bank Outfall Drain at Gharo Creek, near Haleji Lake and near Keenjhar Lake all in Thatta district were selected for the present study (Figs. 1 and 2). In Sindh, after the Left Bank Outfall Drain project, the Right Bank Outfall Drain is the second biggest project.

Right Bank Outfall Drain

Presently, Pakistan is facing two big problems which are salinity and water logging and to resolve these issues

many measures have been taken in Sindh. Right Bank Outfall Drain is a major measure which was carried out on the right bank of the Indus. Right Bank Outfall Drain is a long term project to drain out sewerage and water from towns and agricultural lands on the right bank of the River Indus. It carries effluents from the upper Sindh and adjacent areas of Balochistan and these are ultimately drained into the Arabian Sea. The RBOD is planned to take care of saline water and to dispose off directly into the Sea. But at present, since there is no outlet, the saline effluents flowing through main Nara Valley Drain are discharged as per force into Manchar Lake and Hammal Lake. This saline water contains agricultural waste like fertilizers, pesticides and domestic sewage, and these effluents have degraded and spoiled both the lakes. Currently, the Government has designed to outfall the poisonous effluent directly into the Sea through Gharo Creek.

The disposal of saline effluents into river near Sehwan causing risk for the peoples of Karachi, Hyderabad and small towns who draw their drinking water requirements direct from River Indus and Canal system of Keenjhar Lake. Presently, the effluent from the RBOD is disposed into Manchhar Lake. The principal features of the wetlands to be affected by the RBOD passing nearby, have been underlined below:

^{*}Corresponding author email: tanveer_jabeen@live.com

Fig. 1. Map showing study areas of RBOD.

Fig. 2. Map of District Thatta showing the study areas.

1. Gharo Creek

Gharo Creek is located at 67° 11' E and 24° 47' N. It is about 5.5km long, 500m wide with a minimum depth of 7.5 meters and maximum depth of 17 meters. The total surface area of Gharo Creek is about 64,370ha (Fig. 3). It is placed towards the south east of Karachi. On the southern part of Gharo Creek are mangroves, as the western part is mostly reclaimed area for Port Qasim facility. The total length of Gharo Creek is about 30,000-35,000 gallons/day, which is discharged into the Sea without any treatment. In addition the bank of the creek is also used as a solid waste dumping site. Several pathogens, nutrients and chemicals that come along with the waste matter of Gharo city are not only detrimental to aquatic life, but also result in reduced biodiversity (Ahmed, 1995). The area near the city is also used for agricultural purpose. The agriculture runoff contains large amount of pesticides that ultimately find their way to the creek (Khan *et al.*, 2004). Gharo Creek is a mangrove area, which provides nutrient requirements for species of shrimp and fish, and provides protection from storms and also provides excellent opportunities for research and development work.

2. Keenjhar Lake (Ramsar Site)

Keenjhar Lake is located on 68° 03' E, 24° 56' N, about 19 km North–East of Thatta town and 100 km away from

Fig. 3. View of RBOD at Gharo area.

Fig. 4. RBOD area near Keenjhar Lake.

Fig. 5. RBOD area near Haleji Lake.

Karachi. The Lake has an area of 13,468ha and the largest sweet water reservoir in Sindh and supplies water to the villages around the lake, and to Karachi city, Keti Bunder and Thatta. The maximum depth of the lake is 8m, it is also a Wildlife Sanctuary. The lake is associated with adjacent brackish seepage lagoons and marshes which are in a stony desert and made up of alternating layers of sandstone and limestone (Khan *et al.*, 2012b).

RBOD near Keenjhar Lake

The RBOD flows approximately 3.5 kilometers away from the southern tip of Keenjhar Lake. After crossing Nai-Baran, the Drain is going through riverine area, keeping it on East of Keenjhar Lake between K.B. Feeder Link Canal and Indus River (Fig. 4). Keenjhar Lake is also a significant fish providing point.

3. Haleji Lake (Ramsar Site)

Haleji Lake (Wildlife Sanctuary) is located at 67°46' E and 24°47' N about 21km from Thatta and 88 km from Karachi. The lake is spread up to an area of 1,704ha with the level of water about 1-1.5m and maximum depth is 5-6m. Haleji Lake is a perennial fresh water lake associated with marshes and adjacent brackish seepage lagoons, set in a stony desert of limestone and sandstone bedrock (Khan et al., 2012b). In the late thirties, it used to be a shallow depression, which was converted into a freshwater reservoir by draining of saline water, building of embankments around the lake and filling its tip by Jam Branch Canal carrying water from Keenjhar Lake, which has remained the principal source of water. Haleji is well known for its Pelican and Cormorant Islands. It is also a breeding area of Herons and Egrets and many other birds. Presently it is infested with aquatic weeds and major portion is covered with aquatic grass.

RBOD near Haleji Lake

Presently, the RBOD flows along the edge of Haleji Lake with a discharge of 330 cusecs and a depth of 13 to 15 ft of water just 3 to 4 ft below ground level (Fig. 5). The RBOD drain has a common ground and flows very close to Haleji Lake the distance between RBOD and Haleji Lake hardly 50 to 100ft. The water level is 20-30 ft below the level of the lake area. Due to very short distance from RBOD, Haleji Lake may be affected by the seepage of its water to the drain. So as the ongoing construction work of RBOD may cause degradation in the area of Haleji Lake (Khan *et al.*, 2012b).

4. Hadero Lake

Hadero Lake is located at 67° 52' E and 24° 49' N, about 10km northwest of Thatta town and 85 km away from Karachi, and having an area of 1,321ha. The lake is not deeper than 1.7m. The Lake is situated between the Haleji and Keenjhar Lakes. The substratum is made up of alternating layers of sandstone and limestone with rocky and sandy western and northern shores, bounded by stony desert. The lake is fed by the SLM drain, which links up through the Jam branch canal, and by a number of seasonal streams entering on the north shore. Its main source of water is the runoff from the surrounding catchment, there is no outlet. Hadero Lake is important for Ducks, Coots, Pelicans, Flamingoes and birds of prey. However, it has drastically dropped due to pollution and hunting. The RBOD stretching from Sehwan to Gharo Creek in the Arabian Sea is passing nearby in this lake for a distance of 2.3 canal miles. Presently the supply of drain water to Hadero Lake has been out off and the drain water now into the RBOD channel passing nearby with the result that the water level in the Hadero has gone down and the fauna has been affected (Gabol et al., 2005). The

fishery is the main source of income of the residents who are living near the Lake.

MATERIALS AND METHODS

Study Areas

The following 20 important areas were selected for the present study (Table 1).

Table 1. Wildlife Habitats in RBOD study areas.

S. No.	Name of study area	Co-ordinates
1.	RBOD at Gharo	24 44 26.6 N
		67 35 35.1 E
		24 44 25.8 N
		67 35 31.4 E
		24 44.438 N
		67 35.523 E
		24 44.419 N
		67 35.490 E
		24 44.461 N
		67 35.546 E
2.	RBOD near Haleji Lake	24 45 43.12 N
		67 44 48.87E
3.	Haleji Lake Turning Point	24 44 22.38 N
		67 44 40.65 E
4.	Main Haleji Lake	24 47 14.39 N
		67 45 24.93 E
		24 47.243 N
		67 45.421 E
5.	Near Haleji Information	24 47 12.2 N
	Centre	67 47 24.0 E
6.	Near Haleji Rest House	24 49. 161 N
		67 46. 171 E
		24 47. 446 N
		67 44. 940 E
7.	Haleji Seepage	24 49 19.3 N
	Lagoon/Villages	67 45 36.7 E
8.	Near Haleji Regulator	24 49 19.3 N
		67 47 58.0 E
9.	10km from Makli towards	24 44.600 N
	Keenjhar Lake	67 47.728 E
10.	RBOD near Keenjhar Lake	24 53 25.50 N
		68 03 54.86 E
11.	Keenjhar Information Centre	24 53 45.74 N
	-	68 03 10.39 E
		24 53 46.20 N
		68 03 11.12 E
12.	Keenjhar Main Lake Area	24 54 990 N
		68 04 387 E
		24 58.378 N
		68 05.566 E
		24 54.657 N
		68 06.501 E
		25 06.628 N
		68 07.636 E
13.	Keenjhar Reservoir Area	24 54.40 N
	ž	68 04.21 E
14.	Chiliya	24 50 190 N
		68.00.081 E

S. No.	Name of study area	Co-ordinates
15.	Jhimpir	25 02.163 N
		68 05.740 E
16.	Moldi	24 58.06 N
		68 01.38 E
17.	Chakro	24 01 69.6 N
		68 02 06.0 E
18.	Sonehri	25 01.067 N
		68 07.877 E
19.	Adam Bhambhro	24 51.102 N
		67 59.761 E
20.	K.B. Feeder Canal	25 02 21.7 N
		68 07 55.2 E

Methodology of Physico-Chemical Samples Collection and Analysis

During the study from 2007-2012, conductivity meter was used for the estimation of Conductivity, Total Dissolved Solids, Turbidity, Salinity, and pH was recorded by pH meter. Alkalinity, Carbon dioxide and Phosphates were examined by the process of Acid Base Titration (Titrimetric methods), Total Hardness, Calcium, Magnesium and Chloride were analyzed by using EDTA (Complexometric Titration), Basic Oxygen Demand was examined by Incubation Method-Redox Titration, while Sulphate was analyzed by Gravimetric method, Nitrate was analyzed by Brucine Colorimetric Method and Cadmium, Chromium, Lead and Nickle were analyzed by atomic absorption spectro-photometric method (WHO, 1982, 1993).

Methodology for Vertebrates

Mammals

The mammals were identified by Roberts (1997, 2005a, b).

Roadside Counts

In this method motor vehicles have been used along the road trails while the sighted number of individuals of the species being estimated is tallied and related to the number of kilometers travelled (Brower *et al.*, 1990). Roadside counts methods have some advantaged, such as: traveling on a vehicle does not disturb the animals and there is a chance to observe the animals along the road / track from a few meters distance. Other advantages of this method are large areas can be covered in passage of short time and easily using only two persons and a vehicle (Khan *et al.*, 2012b, c).

Tracks Counts

Track counts have been used for locating and recording the presence of animals.

Pellet Counts

This technique involves removing all pellet groups from plots and then estimating from subsequent observations on those plots the number of groups per hectare to compare animal use of the area between sampling periods.

Small Mammals

One effective way to survey small mammals is active searching. This method is equally applicable to both nocturnal and diurnal species in potential and suitable micro habitats along the canal banks, open plains, particularly in bushy areas and agriculture fields. Active searching is very effective for inventory of *Gerbillus*, *Meriones*, *Hystrix*, and *Hemiechinus* spp.

A mixture of different food grains mixed with fragrant seeds may be used as bait for the attraction of the small mammals. Wheat and rice are used as food grain while peanut butter, coriander, oats and onion are used for fragrance. This bait is found to be highly successful in the study area probably due to the overall food shortage and fragrance.

Traps and trapping procedure

Sherman traps are used to collect the live specimens. Fifty traps are set in a specific area on a line approximately 500 m long and approximately 10m apart. Each trap was marked by a colorful ribbon to locate the traps easily. The traps are set in the afternoon and checked early in the morning. The specimens are transferred into polythene bags and were identified in the field and released.

To investigate nocturnal species, night surveys are conducted in exposed areas of potential habitats on the ground. This methodology involves the use of a powerful torch light, sticks, long boots and gloves etc.

Birds

For field identification of birds, field guides such as Grewal et al. (2002), Grimmett et al. (1998) and Kazmierczak (2000) was used. Secondary data on the overall status of the birds recorded from RBOD were taken from Grimmett et al. (1998) and Roberts (1992). Each major habitat type in the study area was identified and surveys were made to record the species of birds found in each discreet habitat such as lakes, canals, ponds, marshes, forest, agriculture fields, vicinity of human habitation and fallow lands. The number of birds observed in each habitat type was also recorded with particular emphasis on the key species and relate the data to other components of the study area such as vegetation, water and soil, etc. The most commonly used field methods in birds surveying is the "Line Transects" method. It is based on recording birds continually along a predefined route within a predefined survey unit. It can be used in terrestrial, freshwater and marine systems to survey individual species, or group of species. It is to examine birds - habitat relationships and to derive relative and absolute measures of bird abundance.

Line Transects are suitable for extensive, open and uniform habitats and for large and conspicuous species. Double counting of birds becomes a minor issue as the observer is continually on the move. Line Transects are suited to situations where access is good and these are very useful for bird-habitat studies (Khan *et al.*, 2010; Khan *et al.*, 2012b,c).

In the present studies, each sample area was transversed examined by 2 observers separately; birds were searched on each side of the strip for 150m so that each study strip was 300m wide. To evaluate the numbers of water birds utilizing a site, whether from a stationary point or by moving through the area, we used binoculars or a telescope.

Reptiles and Amphibians

Various survey techniques have been employed for the observation of reptiles and amphibians (Khan *et al.*, 2010; Khan *et al.*, 2012a,b,c).

A. Direct Counting One-hour Plot Searching

This consists of searching approximately 20ha (with a 250 meter radius of sampling points) for one hour exactly and recording the number of individuals of each species seen. Similarly, night survey was done with the help of search lights and torches.

Pitfall Traps

Reptiles and amphibians were also detected using a line or pitfall traps. Each pitfall line consists of 30meters of low, flexible nylon fencing pinned to the ground to divert the movements of small ground dwelling animals, mainly reptiles with six 3-liter meter bucket buried in the ground with its lips at ground level along and below the fence, so that the fence straddled each bucket. The use of pitfall lines are restricted to sites where the ground surface is soft enough to dig or sandy areas. Pitfall lines are set for one night only. Team members reach early in the morning before sunrise and record the total number of reptiles of each species found in the bucket.

Turning of Stones, Rocks and Rotten Trees Process

Nocturnal reptiles and amphibians take shelter or rest hiding themselves under the space of stones or rocks. Therefore, in the day time survey, stones or rocks or rotten fallen trees are turned to locate and record the presence of species (Auffenburg and Rahman, 1991).

Study of Basking Behavior

This method of sighting or locating Crocodiles is the most suitable, but it is applied mostly in the winter season. In winter, the temperature of the water of the water bodies becomes very low. Crocodiles come outside the lake for enjoying sunshine to keep themselves warm. Thus, the counting of crocodiles becomes very easy at a particular area during this season.

B. Indirect Counting

Presence of signs like fecal pellets, tracks, den or tunnels (egg laying excavation)

Evidences from the impression of a finger or foot prints, or tail, the presence of fecal pellets, tracks and existence of tunnels (egg laying excavation) help a lot for finding the existence and range of reptilian fauna.

Fish Collection Technique

The methods used for obtaining the representative sample of fish fauna are the gill netting and cast netting. A standard length of a 200m covering maximum of representative habitats, was used to obtain a representative sample (Khan *et al.*, 2012b,c).

Gill Netting

Three nets were used for gill netting, each measuring 15m length with mesh size 2.5x2.5cm and 1.5x1.5cm. Usually the gill nets were used in the morning.

Cast Netting

Cast nets with identified circumference were casted in a stretch of 200m. Five cast nets were used on a line at different stations along the bank of the reservoir. Fish fauna were collected and identified and released after identification. The data collected through the two methods was pooled and called as the representative sampling of the study site.

Methodology for Surveys of Invertebrates

Protozoans

Sterilized screw capped glass bottles were used for the collection of samples from the selected study areas. Samples were quickly transferred and readily brought to the laboratory for analysis. The samples were kept at room temperature.

The protozoans were identified through shape, body structure, external features, locomotion and behavior (Edmondson, 1966; APHA 1992; Curds, 1982; Curds *et al.*, 1983).

Survey of Terrestrial Macroinvertebrates Collection protocols, and standardizing procedures

Specimens belonging to diverse groups of Invertebrates were collected from the various localities of the selected study areas using a variety of collection protocols and techniques.

Sampling Methods for Flighted Terrestrial Macroinvertebrates

Traditional insect hand net

Insects were found upon the bushes, in grasses and on the bark of trees. With the help of traditional insect hand net the insects were collected.

Light trap

This method is used for nocturnal flying insects. The essential light trap comprised an electric bulb, a white sheet as a reflective surface and a funnel to collect insects; insects were collected close to the light source.

Sticky traps

This method is used for flying insects. Range of substrates (e.g. plates, dishes) coated in long-lasting glue. The efficacy of the traps was increased by the use of different colors, mostly depending on target species. Insects were removed from trap using solvents.

Yellow pan traps

This method is used for an extensive variety of insects. Simple method based on a yellow pan (mostly yellow color attracts insects) with vertical baffles the pan was then placed on the ground and added one or two drops of detergent to reduce water tension. Insects were attracted to container and just go down in the water. After the collecting period sieve the catch to remove the liquid and then transferred the contents to a long-term storage preservative such as ethanol.

Sampling Methods for ground dwelling Macroinvertebrates

Hand picking and use of forceps

Hand picking, through bare hands or with the help of long forceps, which has been adopted for the present studies, is by far the very productive method for capturing different groups of terrestrial invertebrates especially arachnids (spiders, solifugids) and myriopods etc.

Pitfall traps

This method is used for ground-dwelling invertebrates (e.g. ants, beetles, spiders). The ground-dwelling invertebrates were collected using pitfall traps. This is the most commonly employed sampling technique in biodiversity inventories. It is used for collecting invertebrates that move along the ground.

Shaking and beating

This method is used for leaf beetles, weevils and Lepidoptera larvae. This is the most widely used method for collecting invertebrates associated with plants. It was used to sample any part of the plant, including branches, leaves, flower heads and even dead wood. A sheet or beating tray is laid out under the plant which is then shaken and beaten and the dislodged invertebrates are collected quickly before they escaped.

Sweep nets

It is an inexpensive and usually used means of sampling invertebrates from vegetation. The net was swang a set number of times through ground vegetation (grass and shrubs), as pacing. To prevent invertebrates escaping the mouth of the net was closed as soon as sweeping was completed.

Sampling Methods for Aquatic invertebrate fauna

For aquatic invertebrates, several sampling methods have been used which are as follows:

Plankton net and drag nets/dip nets

The target group is zooplankton and other aquatic invertebrates. The dip netting is the better way to discover macro-invertebrates like stoneflies, dragon flies, damsel flies, mayflies, water mites, water beetles, water striders, water boatman and water pennies, which are abundant in the water.

Random sampling

Zooplanktons are unequally distributed over wide space and time scales in the water bodies. As it was not possible to sample all of the zooplankton from the lakes and other reservoirs using a single collection method, random sampling was used as the probable procedure in which each and every species has the equal chance and probability to be caught during sampling. Every individual is chosen entirely by chance and the likelihood of a biased data collection is thus reduced.

Precautions in field

Sample labels were accurately completed, including sample ID, date, reservoir name, collecting location, sampler's name and placed into the sample container. All nets, pans and trays were rinsed properly after sampling at a given site, picked and examined free of organisms or debris. Remaining organisms were placed in the sample containers.

Preservation and storage of the specimens

All invertebrate specimens, including the zooplankton were preserved by the addition of grades of 70% ethyl alcohol and formaldehyde. These fluids suffice to preserve the samples indefinitely and in addition have the effect of sending all the plankton to the bottom of the jar. All zooplankton are delicate and simply get damaged,

Table 2. Water quality analysis of RBOD study areas during 2007-2012.

Description		Average	Pre-mons	oon		Average Post-monsoon				
Parameters	2007	2008	2009	2011	2012	2007	2008	2009	2011	2012
Colour	А	А	А	А	А	А	А	А	Α	Α
Odour	0	0	0	0	0	0	0	0	0	0
Water Temperature (°C)	28	29	30	29	30	17.66	17.33	17	18	19
Air Temperature (°C)	31.33	32.33	33.33	32.33	33	20.66	20.33	20	21.33	22.66
Conductivity (µs/cm)	1940.66	1792	1755.33	1024.66	1934	3428.33	3005.66	3146.33	3457.66	3159
TDS (mg/l)	1086	1075.33	1009.33	995	1035	2057	2030.33	2010.33	1990.33	1990.33
pH	7.786	7.782	7.77	7.77	7.115	7.803	7.801	7.79	7.785	7.799
Turbidity (NTU)	1.58	1.61	1.21	0.82	1.03	2.95	2.71	2.54	2.09	1.38
Alkalinity (mg/l)	202.33	197.66	196.33	195	201.33	117.66	114.66	113	117.66	116.66
Total Hardness (mg/l)	589	566	543.66	537.66	577	555.66	533.33	510.66	493.33	557.66
Salinity (mg/l)	6.13	6.06	5.83	5.66	5.66	5.2	5.03	4.73	4.53	4.83
BOD (mg/l)	4.65	4.58	4.06	3.99	3.44	5.40	5.33	5.22	5.16	4.07
Carbon dioxide (mg/l)	1.33	1.33	1.33	1.66	1.33	1.33	1.66	1.66	1.33	1.33
Calcium (mg/l)	104.04	102.7	101.69	100.01	100.01	75.35	74.01	73.00	71.33	71.33
Magnesium (mg/l)	541.45	504.03	500.40	494.76	501.42	525.99	519.26	513.94	508.69	486.33
Sulphates (mg/l)	135.33	125	114.66	101	98.33	185.33	174	226.66	213	142.66
Chloride (mg/l)	692.66	683	671	661.66	656.66	666	656	640.66	632.66	642.66
Nitrates (mg/l)	0.210	0.205	0.202	0.198	0.170	0.192	0.189	0.185	0.179	0.150
Phosphates (mg/l)	0.87	0.90	0.85	0.80	0.87	0.61	0.56	0.54	0.506	0.57
Cadmium (mg/l)	0.007	0.006	0.005	0.003	0.002	0.009	0.007	0.008	0.006	0.010
Chromium (mg/l)	0.044	0.041	0.043	0.041	0.022	0.054	0.052	0.053	0.052	0.054
Lead (mg/l)	0.82	0.79	0.85	0.84	0.96	0.83	0.77	0.80	0.68	0.82
Nickel (mg/l)	0.72	0.55	0.51	0.59	0.89	0.79	0.69	0.66	0.69	0.84

therefore sample handling was gentle. It is advisable not to concentrate the sample too much. Zooplanktons were sub-sampled by adding water to bring the samples to a known volume (500 or 1000ml). The concentrated samples were then stored in appropriate bottles and plastic screw tapped jars. The place of origin, date, mesh-size of the net, length and depth of the haul were written permanent ink on quality paper and placed in the jar as the labels outer surface usually peel off after some time.

Counting and studying the zooplankton

The volume of the zooplankton was determined by the displacement method. First, the total volume of the concentrated sample in addition the preserving fluid was measured. Then the plankton was filtered off, by a filter paper in a funnel, and the volume of the filtrate is measured. The volume of the plankton was then obtained by the difference between the two volumes. A measure of the total catch was also prepared by weighing the filtered plankton. One ml of the concentrated sample may include so many organisms that it would be not easy to count them. Diluted 1ml sample to 100ml and then from it 1 ml was in use. Identification and counting the samples was completed under a dissecting microscope with dark-field illumination. Staining was not essential, although a drop of glycerin was put on each individual specimen isolated from the jar in order to avoid any damage to the samples.

RESULTS

Physico-chemical Parameters of RBOD

During 2007-2012, several standard physico-chemical parameters were analyzed to determine water quality, pollution, Temperature, Conductivity, Total Dissolved Solids, pH, Turbidity, Alkalinity, Total Hardness, Salinity, Basic Oxygen Demand, Carbondioxide, Calcium, Magnesium, Sulphate, Chloride, Nitrate, Phosphate, Cadmium, Chromium, Lead and Nickel were selected for the analysis of water quality. Parameters were analyzed seasonally. The water temperature in premonsoon was observed from 27 to 32°C, while in post monsoon, it varied from 16 to 20°C (Table 2).

Bioecological Studies

There are 2 protozoans species (Table 3), 104 species of arthropods (Table 4), 23 species of zooplanktons (Table 5), 13 species of molluscs (Table 6), 28 species of mammals (Table 7), 228 species of birds (Table 8), 31 species of reptiles (Table 9), 2 species of amphibians (Table 10), 59 species of fishes (Table 11) were recorded.

Species Status

Mammals

In the RBOD study area Palm Squirrel (*Funambulus pennantii*), Indian Desert Jird (*Meriones hurrianae*), Indian Gerbil (*Tatera indica*), Balochistan Gerbil (*Gerbillus nanus*),

House Mouse (*Mus musculus*) and Roof Rat (*Rattus rattus*) were recorded as common species. While, Small Indian Civet (*Viverricula indica*) (Fig. 6), Desert Fox (*Vulpes vulpes*) (Fig. 7) were observed as rare species. The threatened species of mammals in the area include Fishing Cat (*Prionailurus viverrina*), and Smooth-coated Indian Otter (*Lutrogale perspicillata*).

Fig. 6. Small Indian Civet (Viverricula indica).

Fig. 7. Desert Fox (Vulpes vulpes).

Birds

Among birds, 262 species in all have been recorded. During the present study, 228 species of birds have been recorded (Table 8). The threatened bird species of the area are Pallas's Fishing Eagle (*Haliaeetus leucoryphus*) (Fig. 8), Ferruginous Duck (*Aythya nyroca*) (Fig. 9), Imperial Eagle (*Aquila heliaca*) (Fig. 10), Lesser White-fronted Goose (*Anser erythropus*) (Fig. 11), Egyptian Vulture (*Neophron percnopterus*) (Fig. 12), White-backed Vulture (*Gyps bengalensis*) (Fig. 13), Cotton Teal (*Nettapus coromandelianus*) (Fig. 14), White Stork (*Ciconia ciconia*) (Fig. 15), Marbled Teal (*Marmaronetta angustirostris*) (Fig. 16), White Ibis (*Threskiornis melanocephala*) (Fig. 17), Dalmatian Pelican (*Pelecanus crispus*) (Fig. 18), and Black-bellied Tern (*Sterna acuticauda*) (Fig. 19).

Fig. 8. Pallas's Fishing Eagle (Haliaeetus leucoryphus).

Fig. 9. Ferruginous Duck (Aythya nyroca).

Fig. 11. Lesser White-fronted Goose (Anser erythropus).

Fig. 12. Egyptian Vulture (Neophron perenopterus).

Fig. 10. Imperial Eagle (Aquila heliaca).

13. White-backed Vulture (Gyps bengalensis).

Fig. 14. Cotton Teal (Nettapus coromandelianus).

Fig. 15. White Stork (Ciconia ciconia).

Fig. 17. White Ibis (Threskiornis melanocephala).

Fig. 18. Dalmatian Pelican (Pelecanus crispus).

Fig. 16. Marbled Teal (Marmaronetta angustirostris).

Fig. 19. Black-bellied Tern (Sterna acuticauda).

Table 3. List of Protozoans recorded from RBOD study	areas.
--	--------

S. No.	Order	Family	Scientific Name
1.	Euglenoidina	Euglenaceae	<i>Euglena</i> sp.
2.	Volvocales	Volvocaceae	<i>Volvox</i> sp.

Table 4. List of Arthropods recorded from RBOD study areas.

S. No.	Order	Family	Scientific Name
1.	Hemiptera	Alcyrodidae	Aleurolobus barodensis
2.	Hemiptera	Alcyrodidae	Neomaskellia sp.
3.	Hemiptera	Pyrrhocoridae	Dysdercus cingulatus
4.	Hemiptera	Pentatomidae	Bagrada picta
5.	Hemiptera	Pentatomidae	Scotinophara limosa
6.	Hemiptera	Alydidae	Leptocorisa acuta
7.	Hemiptera	Aphididae	Microsiphum granarium
8.	Hemiptera	Aphididae	Myzus persicae
9.	Hemiptera	Diaspididae	Aspidiotus sp.
10.	Hemiptera	Pseudococcidae	Pseudococcus saccharicola
11.	Hemiptera	Pseudococcidae	<i>Icerya</i> sp.
12.	Hemiptera	Pseudococcidae	Ripersia sacchari
13.	Hemiptera	Diaspididae	Aspidiotus sp.
14.	Hemiptera	Lophopidae	Pyrilla perpusilla
15.	Hemiptera	Cicadellidae	Nephotettix sp.
16.	Hemiptera	Jassidae	Idiocerus atkinsoni
17.	Hemiptera	Lygaeidae	Cavelarius excavatus
18.	Hemiptera	Cicadellidae	Nephotettix virescens
19.	Hemiptera	Cicadellidae	Amrasca devastans
20.	Hemiptera	Cicadellidae	Jacobiasca signata
21.	Hemiptera	Cicadellidae	Jacobiasca sp.
22.	Hemiptera	Delphacidae	Sogata distincta
23.	Hemiptera	Delphacidae	Sogatella furcifera
24.	Hemiptera	Delphacidae	Nilaparvata lugens
25.	Hemiptera	Tingidae	Urintius sentis
26.	Hemiptera	Nepidae	Nepa sp.
27.	Hymenoptera	Apidae	Apis sp.
28.	Hymenoptera	Tenthridinidae	Athalia proxima
29.	Isoptera	Termitidae	Odontotermes assmuthi
30.	Isoptera	Termitidae	Microtermes obesi
31.	Thysanoptera	Thripidae	Thrips oryzae
32.	Thysanoptera	Thripidae	Thrips tabaci
33.	Thysanoptera	Thripidae	Scirtothrips dorsalis
34.	Lepidoptera	Arctiidae	Amsacta lactinea
35.	Lepidoptera	Noctuidae	Sesamia inferens
36.	Lepidoptera	Noctuidae	Thysanoplusia orichalcea
37.	Lepidoptera	Noctuidae	Mythimna loreyi
38.	Lepidoptera	Noctuidae	Mythimna separata
39.	Lepidoptera	Noctuidae	Spodoptera exigua
40.	Lepidoptera	Noctuidae	Spodoptera litura
41.	Lepidoptera	Noctuidae	Agrotis ipsilon
42.	Lepidoptera	Noctuidae	<i>Plusia</i> sp.
43.	Lepidoptera	Noctuidae	Agrotis spinifera
44.	Lepidoptera	Noctuidae	Ochropleura berculea

continued...

2882

Table 4 continue

S. No.	Order	Family	Scientific Name
45.	Lepidoptera	Noctuidae	Autogropha nigrisigna
46.	Lepidoptera	Pyranstidae	Leucinodes orbonalis
47.	Lepidoptera	Plutellidae	Plutella xylostella
48.	Lepidoptera	Papilionidae	Papilio demoleus
49.	Lepidoptera	Pieridae	Pieris brassicae
50.	Lepidoptera	Pieridae	Pieris rapae
51.	Lepidoptera	Pyralidae	Bissetia steniella
52.	Lepidoptera	Pyralidae	Chilo suppressalis
53.	Lepidoptera	Pyralidae	Chilo infuscatellus
54.	Lepidoptera	Pyralidae	Chilo partellus
55.	Lepidoptera	Pyralidae	Emmalocera depressella
56.	Lepidoptera	Pyralidae	Scirpophaga incertulas
57.	Lepidoptera	Pyralidae	Scirpophaga nivella
58.	Lepidoptera	Pyralidae	Scirpophaga innotata
59.	Lepidoptera	Pyralidae	Scirpophaga sp.
60.	Orthoptera	Acrididae	Oxya sp.
61.	Orthoptera	Acrididae	Acridella nasuta
62.	Orthoptera	Acrididae	Acrotylus insubricus
63.	Orthoptera	Acrididae	Hieroglyphus sp.
64.	Orthoptera	Acrididae	Chrotogonus sp.
65.	Orthoptera	Acrididae	Chrotogonus concavus
66.	Orthoptera	Gryllidae	Acheta domestica
67.	Orthoptera	Gryllidae	<i>Gryllotalpa</i> sp.
68.	Orthoptera	Mantidae	Mantis sp.
69.	Coleoptera	Chrysomelidae	Dicladispa armigera
70.	Coleoptera	Chrysomelidae	Raphidopalpa foveicollis
71.	Coleoptera	Curculionidae	Myllocerus sp.
72.	Coleoptera	Curculionidae	Cosmopolites sordidus
73.	Coleoptera	Coccinellidae	Epilachna dodecastigma
74.	Coleoptera	Hispidae	Hispa armigera
75.	Coleoptera	Dynastidae	Oryctes rhinoceros
76.	Odonata	Gomphidae	Gomphus sp.
77.	Diptera	Anthomyiidae	Atherigona indica
78.	Diptera	Muscidae	Musca domestica
79.	Diptera	Culicidae	Aedes aegypti
80.	Diptera	Culicidae	Culex fatigans
81.	Diptera	Culicidae	Culex pipiense
82.	Diptera	Culicidae	Culex tarsalis
83.	Diptera	Culicidae	Culex quinquefasciatus
84.	Diptera	Culicidae	Anopheles barbirostris
85.	Diptera		Anopheles barianensis
86.	Diptera	Culicidae	Anopheles claviger
8/.	Diptera	Culicidae	Anopheles gigas simlensis
88.	Diptera	Culicidae	Anopheles nigerrimus
89.	Diptera	Culicidae	Anopheles culicifacies
90.	Diptera	Cultoidae	Anopheles peditaeniatus
91.	Diptera	Cultoidae	Anopheles maculatus
92.	Diptera	Culicidae	Anopheles moghulensis
93.	Diptera	Culicidae	Anopheles pallidus

Table 4 continue

S. No.	Order	Family	Scientific Name
94.	Diptera	Culicidae	Anopheles pulcherrimus
95.	Diptera	Culicidae	Anopheles willmori
96.	Diptera	Culicidae	Anopheles sergenti
97.	Diptera	Culicidae	Anopheles splendidus
98.	Diptera	Culicidae	Anopheles stephensi
99.	Diptera	Trypetidae	Bactocera cucurbitae
100.	Diptera	Trypetidae	Bactocera zonata
101.	Araneae	Thomisidae	Thomisus sp.
102.	Araneae	Araneidae	Cyclosa sp.
103.	Decapoda	Penaeidae	Penaeus merguiensis
104.	Decapoda	Penaeidae	Penaeus japonicus

Table 5. List of Zooplankton recorded from RBOD study areas.

S. No.	Rotifera
1.	Brachionus quadridentatus
2.	Brachionus falcatus
3.	Brachionus buda pestinensis
4.	Brachionus rubens
5.	Euchlanis sp.
6.	Keratella tropica
7.	Keratella volga
8.	<i>Lecane</i> sp.
9.	Mytilina sp.
10.	Platyias quadricornus
Cladoce	ra
11.	Alona rectangula
12.	Bosmina longirostris
13.	Bosminopsis deitersi
14.	Ceriodaphnia reticulata
15.	Chydorus parvuus
16.	Chydorus ovalis
17.	Daphnia sp.
18.	Macrocthrix rosea
19.	Moina sp.
S. No .	
20.	Sida sp.
21.	Simocephalus vetulus
Сореро	da
22.	Cyclopoid sp.
23.	Calonoid sp.

Table 6. List of Molluscs recorded from RBOD study areas.

S. No.	Class	Species
1.	Gastropoda	Bellamya naticoides
2.		Bellamya dissimilis
3.		Bellamya bengalensis

S. No.	Class	Species
4.	Gastropoda	Thiara tuberculata
5.		Gyraulus euphraticus
6.		Lymnaea acuminata
7.		Indoplanorbis exusta
8.		Physa acuta
9.		Lamellidense marginalis
10.	Bivalvia	Lamellidense corrianus
11.		Parreysia caerula
12.		Parreysia pachysoma
13.		Parreysia wynegungaensis

Reptiles

In the present study, 31 species of reptiles were recorded (Table 9).

Amphibians

Among amphibians, Skittering Frog (*Euphlyctis cyanophlyctis*) and Indus Toad (*Duttaphrynus stomaticus*) are common (Table 10).

Fishes

There are 59 fish species were recorded. *Catla catla, Aorichthys aor, Bagarius bagarius, Gudusia chapra, Wallago attu, Channa marulia, Xenentodon cancila, Labeo rohita, Heteropneustes fossilis, Cirrhinus mrigala, Notopterus notopterus, Hypophthalmichthys molitrix, Aristchthys nobilis* and *Ctenpharyngodon idella* are some important fishes of the study area (Table 11).

Flora

As regards the flora, 262 species of plants were recorded. *Typha angustata, Phragmites karka* and *Hydrilla verticillata* were found common aquatic floral species in the area. *Salvinia molesta* and *Eichhornia crasspes* were recorded as exotic species, whereas *Tamarix* spp. was found abundant.

S. No.	Order	Family	Scientific Name	Common Name	Status	Previously recorded	Presently Recorded
1.	Rodentia	Hystricidae	Hystrix indica	Indian Crested Porcupine	LC	+	+
2.	Rodentia	Sciuridae	Funambulus pennantii	Palm Squirrel	С	+	+
3.	Rodentia	Muridae	Mus saxicola	Grey Spiny Mouse	LC	+	+
4.	Rodentia	Muridae	Rattus rattus	Roof Rat / House Rat	С	+	+
5.	Rodentia	Muridae	Mus musculus	House Mouse	С	+	+
6.	Rodentia	Muridae	Mus booduga	Little Indian Field Mouse	LC	+	+
7.	Rodentia	Muridae	Nesokia indica	Short-tailed Mole Rat	LC	+	+
8.	Rodentia	Muridae	Meriones hurrianae	Indian Desert Jird	С	+	+
9.	Rodentia	Muridae	Tatera indica	Indian Gerbil	С	+	+
10.	Rodentia	Muridae	Gerbillus nanus	Balochistan Gerbil	C	+	+
11.	Insectivora	Erinaceidae	Paraechinus micropus	Indian Hedgehog	LC	+	+
12.	Insectivora	Erinaceidae	Hemiechinus collaris	Long-eared Desert Hedgehog	LC	+	+
13.	Insectivora	Soricidae	Suncus murinus	House Shrew	LC	+	+
14.	Chiroptera	Vespertilionidae	Pipistrellus kuhlii	Kuhl's Bat	S	+	+
15.	Chiroptera	Megadermatidae	Hipposideros fulvus	Leaf-nosed Bat	LC	+	+
16.	Chiroptera	Rhinopomatidae	Rhinopoma microphyllum	Large Mouse- tailed Bat	LC	+	+
17.	Chiroptera	Pteropidae	Rousettus aegypticus	Egyptian Bat	LC		+
18.	Lagomorpha	Leporidae	Lepus nigricollis	Desert Hare / Indian Hare	LC	+	+
19.	Artiodactyla	Suidae	Sus scrofa	Indian Wild Boar	LC	+	
20.	Pholidota	Manidae	Manis crassicaudata	Indian Pangolin	Rr	+	
21.	Carnivora	Mustelidae	Lutrogale perspicillata	Smooth-coated Otter	Rr	+	+
22.	Carnivora	Canidae	Vulpes vulpes	Desert Fox/Red Fox	Rr	+	+
23.	Carnivora	Canidae	Canis aureus	Asiatic Jackal	LC	+	+
24.	Carnivora	Canidae	Vulpes bengalensis	Indian Fox	S	+	+
25.	Carnivora	Herpestidae	Herpestes javanicus	Small Mongoose	LC	+	+
26.	Carnivora	Herpestidae	Herpestes edwardsi	Grey Mongoose	LC	+	+
27.	Carnivora	Felidae	Felis sylvestris	Indian Desert Cat	S	+	+
28.	Carnivora	Felidae	Felis chaus	Jungle Cat	S	+	+
29.	Carnivora	Felidae	Prionailurus viverrina	Fishing Cat	Rr	+	+
30.	Carnivora	Viverridae	Viverricula indica	Small Indian Civet	Rr	+	+

Table 7. List of Mammals recorded from RBOD study areas.

Legends: C = Common; LC = Less Common; S = Scarce; Rr = Rare; + = Present; -- = Absent

S.	. Order Family Scientific Name Common Name Occurrence	Stat	tus				
No.	Order	Family	Scientific Name	Common Name	Occurrence	Previous	Present
1.	Podicipedifor mes	Podicipedidae	Podiceps cristatus	Great Crested Grebe	WV	+	
2.	Podicipedifor mes	Podicipedidae	Tachybaptes ruficollis	Little Grebe	R	+	+
3.	Pelecaniformes	Phalacrocoracidae	Phalacrocorax carbo	Large Cormorant	R	+	+
4.	Pelecaniformes	Phalacrocoracidae	Phalacrocorax fuscicollis	Indian Shag	R	+	
5.	Pelecaniformes	Phalacrocoracidae	Phalacrocorax niger	Little Cormorant	R	+	+
6.	Pelecaniformes	Phalacrocoracidae	Anhinga melanogaster	Darter	0	+	
7.	Pelecaniformes	Pelecanidae	Pelecanus crispus	Dalmatian Pelican	WV	+	+
8.	Pelecaniformes	Pelecanidae	Pelecanus onocrotalus	White Pelican	WV	+	+
9.	Ciconiformes	Ardeidae	Ardea cinerea	Grey Heron	R	+	+
10.	Ciconiformes	Ardeidae	Ardea purpurea	Purple Heron	R	+	+
11.	Ciconiformes	Ardeidae	Buturoides striatus	Little Green Heron	R		+
12.	Ciconiformes	Ardeidae	Ardeola grayii	Indian Pond Heron	R	+	+
13.	Ciconiformes	Ardeidae	Egretta alba	Large Egret	R	+	+
14.	Ciconiformes	Ardeidae	Bubulcus ibis	Cattle Egret	R	+	+
15.	Ciconiformes	Ardeidae	Egretta intermedia	Intermediate Egret	R	+	+
16.	Ciconiformes	Ardeidae	Egretta garzetta	Little Egret	R	+	+
17.	Ciconiformes	Ardeidae	Egretta gularis	Indian Reef Heron	0	+	+
18.	Ciconiformes	Ardeidae	Nycticorax nycticorax	Night Heron	R	+	+
19.	Ciconiformes	Ardeidae	Ixobrychus cinnamomeus	Chestnut Bittern	SV	+	+
20.	Ciconiformes	Ardeidae	Ixobrychus sinensis	Yellow Bittern	SV	+	+
21.	Ciconiformes	Ardeidae	Dupetor flavicollis	Black Bittern	SV	+	+
22.	Ciconiformes	Ciconiidae	Anastomus oscitans	Openbill Stork	0	+	
23.	Ciconiformes	Ciconiidae	Ciconia ciconia	White Stork	0	+	
24.	Ciconiformes	Threskiornithidae	Threskiornis melanocephala	White Ibis	R	+	+
25.	Ciconiformes	Threskiornithidae	Plegadis falcinellus	Glossy Ibis	R	+	+
26.	Ciconiformes	Threskiornithidae	Platalea leucorodia	Spoonbill	WV	+	+
27.	Ciconiformes	Phoenicopteridae	Phoenicopterus roseus	Greater Flamingo	0	+	+
28.	Anseriformes	Anatidae	Anser albifrons	White-fronted Goose	WV		

Table 8. List of Birds recorded from RBOD study areas.

C						Stor	huc
S. No	Order	Family	Scientific Name	Common Name	Occurrence	Dravious	Drasont
29.	Anseriformes	Anatidae	<i>Dendrocygna</i>	Lesser Whistling	SV	+	
30.	Anseriformes	Anatidae	Dendrocygna bicolor	Large Whistling	0	+	
31.	Anseriformes	Anatidae	Cygnus columbianus	Bewick's Swan	0		
32.	Anseriformes	Anatidae	Tadorna ferruginea	Ruddy Shelduck	WV	+	+
33.	Anseriformes	Anatidae	Tadorna tadorna	Common Shelduck	0	+	+
34.	Anseriformes	Anatidae	Anser erythropus	LesserWhite- fronted Goose	WV	+	
35.	Anseriformes	Anatidae	Marmaronetta angustirostris	Marbled Teal	WV	+	+
36.	Anseriformes	Anatidae	Anas acuta	Pintail	WV	+	+
37.	Anseriformes	Anatidae	Anas creca	Common Teal	WV	+	+
38.	Anseriformes	Anatidae	Anas querquedula	Garganey	PM	+	+
39.	Anseriformes	Anatidae	Anas poecilorhyncha	Spotbill Duck	Spotbill Duck R		
40.	Anseriformes	Anatidae	Anas platyrhynchos	Mallard	WV	+	+
41.	Anseriformes	Anatidae	Anas strepera	Gadwall	WV	+	+
42.	Anseriformes	Anatidae	Anas penelope	Wigeon	WV	+	+
43.	Anseriformes	Anatidae	Anas clypeata	Shoveller	WV	+	+
44.	Anseriformes	Anatidae	Aythya ferina	Common Pochard	WV	+	+
45.	Anseriformes	Anatidae	Aythya nyroca	Ferruginous Duck	WV	+	+
46.	Anseriformes	Anatidae	Aythya marila	Scaup Duck	0	+	
47.	Anseriformes	Anatidae	Aythya fuligula	Tufted Duck	WV	+	+
48.	Anseriformes	Anatidae	Netta rufina	Red-crested Pochard	0	+	
49.	Anseriformes	Anatidae	Nettapus coromandelianus	Cotton Teal	R	+	
50.	Falconiformes	Accipitridae	Elanus caeruleus	Black-winged Kite	R	+	+
51.	Falconiformes	Accipitridae	Milvus migruns	Black Kite	R	+	+
52.	Falconiformes	Accipitridae	Haliastur indus	Brahminy Kite	0	+	+
53.	Falconiformes	Accipitridae	Haliaeetus albicilla	White-tailed Sea Eagle	0	+	
54.	Falconiformes	Accipitridae	Neophron percnopterus	Egyptian Vulture	R		+
55.	Falconiformes	Accipitridae	Haliaeetus leucoryphus	Pallas's Fishing Eagle	R	+	+
56.	Falconiformes	Accipitridae	Gyps bengalensis	White-backed Vulture	R	+	
57.	Falconiformes	Accipitridae	Gyps fulvus	Griffon Vulture	WV	+	+
58.	Falconiformes	Accipitridae	Aegypius monachus	Cinereous Vulture	WV	+	+
59.	Falconiformes	Accipitridae	Circaetus gallicus	Short-toed Eagle	0	+	+

0							
S. No.	Order	Family	Scientific Name	Common Name	Occurrence	Previous	Present
60.	Falconiformes	Accipitridae	Circus aeruginosus	Marsh Harrier	WV	+	+
61.	Falconiformes	Accipitridae	Circus macrourus	Pallid Harrier	WV	+	+
62.	Falconiformes	Accipitridae	Accipitier badius	Shikra	R	+	+
63.	Falconiformes	Accipitridae	Butastur teesa	White-eyed Buzzard	R	+	+
64.	Falconiformes	Accipitridae	Buteo vulpinus	Desert Buzzard	WV	+	+
65.	Falconiformes	Accipitridae	Buteo rufinus	Long-legged Buzzard	WV	+	+
66.	Falconiformes	Accipitridae	Aquila clanga	Greater Spotted Eagle	WV	+	+
67.	Falconiformes	Accipitridae	Aquila rapax	Tawny Eagle	R	+	+
68.	Falconiformes	Accipitridae	Aquila heliaca	Imperial Eagle	WV	+	+
69.	Falconiformes	Accipitridae	Aquila nipalensis	Steppe Eagle	WV	+	+
70.	Falconiformes	Accipitridae	Hieraaetus pennatus	Booted Eagle	WV	+	
71.	Falconiformes	Accipitridae	Hieraaetus fasciatus	Bonelli's Eagle	R	+	
72.	Falconiformes	Pandionidae	Pandion haliaetus	Osprey	WV	+	+
73.	Falconiformes	Falconidae	Falco tinnunculus	Kestrel	R	+	+
74.	Falconiformes	Falconidae	Falco chiquera	Red-headed Merlin	R	+	+
75.	Falconiformes	Falconidae	Falco columbarius	Merlin	WV		+
76.	Galliformes	Phasianidae	Francolinus francolinus	Black Partridge	R	+	+
77.	Galliformes	Phasianidae	Francolinus	Grey Partridge	R	+	+
78.	Galliformes	Phasianidae	Conturnix coturnix	Common Quail	PM	+	+
79.	Gruiformes	Rallidae	Rallus aquaticus	Water Rail	WV	+	+
80.	Gruiformes	Rallidae	Porzana porzana	Spotted Crake	WV	+	+
81.	Gruiformes	Rallidae	Amaurornis	White-breasted	R	+	+
			phoenicurus	Water Hen			
82.	Gruiformes	Rallidae	Gallinula chloropus	Indian Moorhen	R	+	+
83.	Gruiformes	Rallidae	Porphyrio porphyrio	Purple Moorhen	R	+	+
84.	Gruiformes	Rallidae	Fulica atra	Coot	WV	+	+
85.	Gruiformes	Rallidae	Gallicrex cinerea	Watercock	WV	+	+
86.	Gruiformes	Gruidae	Grus grus	Common Crane	PM	+	
87.	Gruiformes	Gruidae	Anthropoides virgo	Demoiselle Crane	PM	+	
88.	Charadriiformes	Jacanidae	Hydrophasianus chirurgus	Pheasant-tailed Jacana	R	+	+
89.	Charadriiformes	Jacanidae	Metopidius indicus	Bronze-winged Jacana	0	+	
90.	Charadriiformes	Haematopodidae	Haematopus ostralegus	Oystercatcher	WV		+

S						Stat	115
No.	Order	Family	Scientific Name	Common Name	Occurrence	Previous	Present
91.	Charadriiformes	Charadriidae	Vanellus leucurus	White-tailed Lapwing	WV	+	+
92.	Charadriiformes	Charadriidae	Vanellus indicus	Red-wattled Lapwing	R	+	+
93.	Charadriiformes	Charadriidae	Vanellus vanellus	Green Plover	0	+	+
94.	Charadriiformes	Charadriidae	Vanellus malabaricus	Yellow-wattled Lapwing	ellow-wattled SV apwing		+
95.	Charadriiformes	Charadriidae	Pluvialis squatarola	Black-bellied Plover	WV	+	
96.	Charadriiformes	Charadriidae	Pluvialis dominica	Eastern Golden Plover	WV	+	
97.	Charadriiformes	Charadriidae	Charadrius dubius	Little Ringed Plover	WV	+	+
98.	Charadriiformes	Charadriidae	Charadrius alexandrines	Kentish Plover	WV	+	+
99.	Charadriiformes	Recurvirostridae	Himantopus himantopus	Black-winged Stilt	R	+	+
100.	Charadriiformes	Recurvirostridae	Recurvirostra avosetta	Avocet	0	+	+
101.	Charadriiformes	Burhinidae	Glareola pratincola	Collared Pratincole	SV	+	+
102.	Charadriiformes	Burhinidae	Glareola lacteal	Small Indian Pratincole	SV	+	+
103.	Charadriiformes	Scolopacidae	Numenius phaeopus	Whimbrel	PM	+	+
104.	Charadriiformes	Scolopacidae	Numenius arquata	Curlew	PM	+	+
105.	Charadriiformes	Scolopacidae	Limosa limosa	Black-tailed Godwit	WV	+	+
106.	Charadriiformes	Scolopacidae	Limosa lapponica	Bartailed Godwit	WV		+
107.	Charadriiformes	Scolopacidae	Tringa erythropus	Spotted Red Shank	WV	+	+
108.	Charadriiformes	Scolopacidae	Tringa totanus	Common Red Shank	WV	+	+
109.	Charadriiformes	Scolopacidae	Tringa stagnatilis	Marsh Sandpiper	WV	+	+
110.	Charadriiformes	Scolopacidae	Tringa nebularia	Green Shank	WV	+	+
111.	Charadriiformes	Scolopacidae	Tringa ochropus	Green Sandpiper	WV	+	+
112.	Charadriiformes	Scolopacidae	Tringa glareola	Wood Sandpiper	WV	+	+
113.	Charadriiformes	Scolopacidae	Tringa terek	Terek Sandpiper	WV	+	+
114.	Charadriiformes	Scolopacidae	Tringa hypoleucos	Common Sandpiper	WV	+	+
115.	Charadriiformes	Scolopacidae	Capella gallinago	Common Snipe	WV	+	+
116.	Charadriiformes	Scolopacidae	Calidris minutus	Little Stint	WV	+	+
117.	Charadriiformes	Scolopacidae	Calidris temminckii	Temminck's Stint	WV	+	+
118.	Charadriiformes	Scolopacidae	Calidris alpinus	Dunlin	WV	+	+
119.	Charadriiformes	Scolopacidae	Philomachus pugnax	Ruff	PM	+	+
120.	Charadriiformes	Glareolidae	Cursorius coromandelicus	Indian Courser	R		+
121.	Charadriiformes	Laridae	Larus argentatus	Herring Gull	WV	+	+

						-	
S. No	Order	Family	Scientific Name	Common Name	Occurrence	Bravious	Present
122.	Charadriiformes	Laridae	Larus fuscus	LesserBlack-	WV		+
123.	Charadriiformes	Laridae	Larus ichthyaetus	GreatBlack-	WV	+	+
124.	Charadriiformes	Laridae	Larus brunnicephalus	Brown-headed Gull	WV	+	+
125.	Charadriiformes	Laridae	Larus ridibundus	Black-headed Gull	WV	+	+
126.	Charadriiformes	Laridae	Larus genei	Slender-billed Gull	WV	+	+
127.	Charadriiformes	Laridae	Larus canus	Mew Gull	0	+	
128.	Charadriiformes	Sternidae	Chlidonias hybrida	Whiskered Tern	R	+	+
129.	Charadriiformes	Sternidae	Chlidonias leucopterus	White-winged Black Tern	PM	+	+
130.	Charadriiformes	Sternidae	Gelochelidon nilotica	Gull-billed Tern	R	+	+
131.	Charadriiformes	Sternidae	Hydroprogne caspia	Caspian Tern	R	+	+
132.	Charadriiformes	Sternidae	Sterna aurantia	River Tern	WV	+	+
133.	Charadriiformes	Sternidae	Sterna hirundo	Common Tern	SV		+
134.	Charadriiformes	Sternidae	Sterna repressa	White Cheecked Tern	SV		+
135.	Charadriiformes	Sternidae	Sterna acuticauda	Black-bellied Tern	R	+	+
136.	Charadriiformes	Sternidae	Sterna albifrons	Little Tern	PM	+	+
137.	Charadriiformes	Sternidae	Sterna bergii	Large Crested Tern	0	+	
138.	Charadriiformes	Sternidae	Sterna sandvicensis	Sandwich Tern	М		+
139.	Charadriiformes	Rhynchopidae	Rynchops albicollis	Indian Skimmer	PM	+	
140.	Columbiformes	Pteroclididae	Pterocles exustus	Chestnut-bellied Sandgrouse	0	+	+
141.	Columbiformes	Pteroclididae	Pterocles senegallus	Spotted Sandgrouse	WV		+
142.	Columbiformes	Pteroclididae	Pterocles orientalis	Black-bellied Sandgrouse	WV		+
143.	Columbiformes	Pteroclididae	Pterocles alehata	Pintailed Sandgrouse	R		+
144.	Columbiformes	Columbidae	Treron phoenicoptera	Yellow Footed Green Pigeon	WV	+	+
145.	Columbiformes	Columbidae	Columba livia	Blue Rock Pigeon	R	+	+
146.	Columbiformes	Columbidae	Columba eversmanni	Yellow-eyed or Eastern Rock Pigeon	Ο	+	+
147.	Columbiformes	Columbidae	Treron bicincta	Orange-breasted Green Pigeon	0		+
148.	Columbiformes	Columbidae	Streptopelia decaocto	Ring Dove	R	+	+
149.	Columbiformes	Columbidae	Streptopelia tranquebarica	Red Turtle Dove	SV	+	+

C						Stat	
S. No	Order	Family	Scientific Name	Common Name	Occurrence	Drovious	Drosont
150	Columbiformos	Columbidaa	Strantonalia	Little Brown	D	rievious	riesent
150.	Columbionics	Columbidae	senegalensis	Dove	К	T	Ţ
151	Psittaciformes	Psittacidae	Psittacula	Rose Ringed	R	+	+
1011	1 shuuchonnes	1 britaeraac	krameri	Parakeet	I.		,
152.	Cuculiformes	Cuculidae	Clamator	Pied-crested	SV	+	+
			jacobinus	Cuckoo			
153.	Cuculiformes	Cuculidae	Eudynamys	Koel	R	+	+
			scolopacea				
154.	Cuculiformes	Cuculidae	Centropus sinensis	Greater Coucal	R	+	+
155.	Strigiformes	Tytonidae	Tyto alba	Indian Barn Owl	R		+
156.	Strigiformes	Strigidae	Otus brucei	Striated Scops	WV		+
				Owl			
157.	Strigiformes	Strigidae	Otus scops	Eastern Scops	WV		+
1.50		~		Owl			
158.	Strigiformes	Strigidae	Otus bakkamoena	Collared Scops	0	+	+
150	Cturing Community	G(1) 1 1 .		Owl	0		
159.	Strigiformes	Strigidae		Eagle Owl	<u> </u>	+	+
160.	Strigiformes	Strigidae	Athene brama	Spotted Owlet	K	+	+
101.	Strightormes	Strigidae	Asio diamana	Long-eared Owl			+
162.	Convinulation	Strigidae	Asio flammeus	Indian Little			+
105.	Capriniughormes	Capriniurgidae	caprimuigus	Nightiar	ĸ	+	+
164	Conrinulatormas	Conrimulaidoo	Caprimulaus	Furonoan	SV		1
104.	Capinnuignonnes	Capinnuigidae	europaeus	Nightiar	31	Ŧ	Ŧ
165	Caprimulgiformes	Caprimulgidae	Caprimulous	Syke's Nightiar	R	+	+
105.	Cuprimuightonines	Cuprimuigiaue	mahrattensis	by Ke 5 Highlight	R		
166.	Apodiformes	Apodidae	Apus affinis	House Swift	R	+	+
167.	Coraciformes	Alcedinidae	Ceryle rudis	Pied Kingfisher	R	+	+
168.	Coraciformes	Alcedinidae	Alcedo atthis	Common	R	+	+
				Kingfisher			
169.	Coraciformes	Alcedinidae	Halcyon	White-breasted	R	+	+
			smyrnensis	Kingfisher			
170.	Coraciformes	Meropidae	Merops	Blue-cheeked	SBV	+	+
			superciliosus	Bee-eater			
171.	Coraciformes	Meropidae	Merops orientalis	Green Bee-eater	R	+	+
172.	Coraciformes	Meropidae	Merops apiaster	European Bee-	R		+
172	0	0		eater			
173.	Coraciformes	Coraciidae	Coracias garrulus	European Roller	<u> </u>	+	
1/4.	Coraciformes	Coraciidae	Coracias	Indian Koller	K	+	+
175	Coraciformas	Ununidaa	Unung energy	Hoopoo	WIN		
175.	Digiformos	Dipidae	Dinonium	Lesser Golden-backed		+	+
170.	1 ichornies	I ICIUAE	hengalensis	Woodpecker	К	+	+
177	Piciformes	Picidae	Picoides	Vellow-fronted	R	+	+
1//.	i icitorines	1 101040	mahrattensis	Pied Woodnecker	IX.		I
178.	Piciformes	Picidae	Jvnx torquilla	Wrvneck	PM	+	+
179.	Passeriformes	Alaudidae	Mirafra	Indian/Red-	0	+	+
			erythroptera	winged Bush	-		
				Lark			

S						Stat	110
No.	Order	Family	Scientific Name	Common Name	Occurrence	Previous	Present
180.	Passeriformes	Alaudidae	Eremopterix grisea	Ashy-crowned Finch Lark	R	+	+
181.	Passeriformes	Alaudidae	Eremopterix nigriceps	Black-crowned Finch Lark	R	+	+
182.	Passeriformes	Alaudidae	Ammomanes deserti	Desert Finch Lark	R	+	+
183.	Passeriformes	Alaudidae	Calandrella rufescens	Lesser Short- toed Lark	WV		+
184.	Passeriformes	Alaudidae	Calandrella raytal	Indus Sand Lark	R		+
185.	Passeriformes	Alaudidae	Galerida cristata	Crested Lark	R	+	+
186.	Passeriformes	Alaudidae	Alauda gulgula	Oriental Sky R Lark		+	+
187.	Passeriformes	Hirundinidae	Riparia riparia	Collared Sand Martin	WV		+
188.	Passeriformes	Hirundinidae	Riparia paludicola	Grey-throated Sand Martin	WV	+	+
189.	Passeriformes	Hirundinidae	Hirundo smithi	Wire-tailed Swallow	SV	+	+
190.	Passeriformes	Hirundinidae	Hirundo rustica	Barn Swallow	WV	+	+
191.	Passeriformes	Hirundinidae	Hirundo daurica	Red-rumped Swallow	WV	+	+
192.	Passeriformes	Motacillidae	Anthus novaeseelandiae	Paddyfield Pipit	R	+	+
193.	Passeriformes	Motacillidae	Anthus campestris	Tawny Pipit WV		+	
194.	Passeriformes	Motacillidae	Anthus trivialis	Tree Pipit	Tree Pipit PM		+
195.	Passeriformes	Motacillidae	Anthus spinoletta	Water Pipit	Water Pipit WV		+
196.	Passeriformes	Motacillidae	Motacilla flava	Yellow Wagtail	PM	+	+
197.	Passeriformes	Motacillidae	Motacilla citreola	Yellow-headed Wagtail	WV	+	+
198.	Passeriformes	Motacillidae	Motacilla alba	Pied Wagtail	WV	+	+
199.	Passeriformes	Motacillidae	Motacilla maderaspatensis	White-browed Pied Wagtail	R	+	+
200.	Passeriformes	Laniidae	Lanius isabellinus	Isabelline Shrike	WV	+	+
201.	Passeriformes	Laniidae	Lanius excubitor	Grey Shrike	R/SBV	+	+
202.	Passeriformes	Laniidae	Lanius vittatus	Bay-backed Shrike	R	+	+
203.	Passeriformes	Laniidae	Lanius schach	Rufous-backed Shrike	R	+	+
204.	Passeriformes	Dicruridae	Dicrurus adsimilis	Black Drongo/ King Crow	R	+	+
205.	Passeriformes	Sturnidae	Sturnus roseus	Rosy Pastor	PM	+	+
206.	Passeriformes	Sturnidae	Acridotheres ginginianus	Bank Myna	R	+	+
207.	Passeriformes	Sturnidae	Sturnus vulgaris	Common Starling	0	+	+
208.	Passeriformes	Sturnidae	Acridotheres tristis	Indian Myna	R	+	+
209.	Passeriformes	Corvidae	Dendrocitta vagabunda	Tree Pie	R	+	+

C						Stat	110
S. No.	Order	Family	Scientific Name	Common Name	Occurrence	Previous	Present
210.	Passeriformes	Corvidae	Corvus splendens	House Crow	R	+	+
211.	Passeriformes	Corvidae	Corvus corax	Common Raven	R/WV	+	+
212.	Passeriformes	Campephagidae	Tephrodornis pondicerianus	Common Wood Shrike	R	+	+
213.	Passeriformes	Campephagidae	Pericrocotus cinnamomeus	Wandering Minivet	0	+	
214.	Passeriformes	Pyconotidae	Pycnonotus leucogenys	White-cheeked Bulbul	R	+	+
215.	Passeriformes	Pyconotidae	Pycnonotus cafer	Red-vented Bulbul	R	+	+
216.	Passeriformes	Timaliidae	Turdoides caudatus	Common Babbler	R	+	+
217.	Passeriformes	Timaliidae	Turdoides earlei	Striated Babbler	R	+	+
218.	Passeriformes	Timaliidae	Turdoides striatus	Jungle Babbler	R	+	+
219.	Passeriformes	Nectariniidae	Nectarinia asiatica	Purple Sunbird	R	+	+
220.	Passeriformes	Muscicapidae	Muscicapa striata	Spotted PM Flycatcher		+	+
221.	Passeriformes	Muscicapidae	Ficedula parva	Red-throated Flycatcher	PM	+	+
222.	Passeriformes	Monarchidae	Hypothymus azurea	Black-naped Flycatcher	WV	+	
223.	Passeriformes	Sylviidae	Orthotomus sutorius	Tailor Bird	R	+	+
224.	Passeriformes	Sylviidae	Acrocephalus agricola	Paddy-field Warbler	WV	+	+
225.	Passeriformes	Sylviidae	Acrocephalus stentoreus	Clamorous Great Reed Warbler	WV	+	+
226.	Passeriformes	Sylviidae	Cettia cetti	Cetti's Warbler	WV	+	+
227.	Passeriformes	Sylviidae	Acrocephalus dumetorum	Blyth's Reed Warbler	PM	+	+
228.	Passeriformes	Sylviidae	Prinia inornata	Plain Prinia	R	+	+
229.	Passeriformes	Sylviidae	Prinia buchanani	Rufous-fronted Long-tailed Warbler	R	+	+
230.	Passeriformes	Sylviidae	Prinia gracilis	Streaked Wren Warbler	R	+	+
231.	Passeriformes	Sylviidae	Prinia flaviventris	Yellow Bellied Long-tailed Warbler	R	+	+
232.	Passeriformes	Sylviidae	Prinia burnesii	Long-tailed Grass Warbler	R	+	+
233.	Passeriformes	Sylviidae	Hippolais caligata	Syke's Tree Warbler	WV	+	+
234.	Passeriformes	Sylviidae	Sylvia hortensis	Orphean Warbler	WV	+	+
235.	Passeriformes	Sylviidae	Sylvia curruca	LesserWhite- throat	WV	+	+
236.	Passeriformes	Sylviidae	Sylvia communis	CommonWhite- throat	PM	+	+

S.	Order	Family	Scientific Name	Common Name	Occurrence	Stat	tus
No.	51461					Previous	Present
237.	Passeriformes	Sylviidae	Sylvia nana	Desert Warbler	WV	+	+
238.	Passeriformes	Sylviidae	Phylloscopus	Brown Leaf	WV	+	+
220	Descrift	0.1.1.1.	collybita	Warbler	XX/X /		
239.	Passeriformes	Sylviidae	Phylloscopus ain di anna	Sind Chiffchaff	wv		+
240	Descoriformes	Sylviidaa	Sinaianus Dhyllosoopus	Dlain Loof	WV		
240.	rassemonies	Sylvildae	neglectus	Warbler	vv v	Ŧ	Ŧ
241	Passeriformes	Sylviidae	Phylloscopus	Bright Green	WV	+	+
241.	1 disseriiorines	Byrviidae	nitidus	Leaf Warbler		I	1
242.	Passeriformes	Turdidae	Ervthropygia	Rufous chat/	PM	+	+
			galacototes	Rufous-tailed			
			0	Scrub Robin			
243.	Passeriformes	Turdidae	Luscinia svecicus	Bluethroat	WV	+	+
244.	Passeriformes	Turdidae	Phoenicurus	Black Redstart	WV	+	+
			ochruros				
245.	Passeriformes	Turdidae	Saxicola caprata	Pied Bush Chat	R	+	+
246.	Passeriformes	Turdidae	Oenanthe deserti	Desert Wheatear	WV	+	+
247.	Passeriformes	Turdidae	Oenanthe picata	Pied Chat	WV	+	+
248.	Passeriformes	Turdidae	Oenanthe	Hume's	R	+	+
			alboniger	Wheatear			
249.	Passeriformes	Turdidae	Saxicoloides	Indian Robin	R	+	+
			fulicata				
250.	Passeriformes	Rhipiduridae	Rhipidura aureola	White-browed	R	+	+
251	D if			Fantail Flycatcher			
251.	Passeriformes	Passeridae	Passer domesticus	House Sparrow	R DM	+	+
252.	Passeriformes	Passeridae	Passer him ani olongia	Spanish Sparrow	PM	+	+
252	Desseriformes	Desseridee	nispanioiensis Dasson	Sindh Jungla	D		
233.	rassemonies	rassenuae	russer	Shiuli Juligie	К	+	+
254	Passeriformes	Passeridae	Pectronia	Vellow-throated	SV		
234.	1 assernormes	1 assertate	xanthocollis	Sparrow	54	I	1
255.	Passeriformes	Ploceidae	Ploceus	Bava	R	+	+
			philippinus				
256.	Passeriformes	Ploceidae	Ploceus manyar	Streaked	SV	+	+
				Weaver			
257.	Passeriformes	Estrildidae	Lonchura	White-throated	R	+	+
			malabarica	Munia/Indian			
				Silver Bill			
258.	Passeriformes	Fringillidae	Fringilla	Brambling	0	+	
			montifringilla				
259.	Passeriformes	Fringillidae	Bucanetes	Trumpeter Finch	R	+	
			githaginea				
260.	Passeriformes	Emberizidae	Emberiza	Grey-necked	PM	+	
2.61	D IC		buchanani	Bunting	** ** *		
261.	Passeriformes	Emberizidae	Emberiza	Black-headed	WV	+	+
262	Desserie	Each and 14	metanocephala	Bunting	P		
202.	Passeriformes	Emperizidae	Emberiza striolata	Striped Bunting	К	+	

Legends: R = Resident; WV = Winter Visitor; SV = Summer Visitor; SBV = Summer Breeding Visitors; YRV = Year Round Visitors; O = Vagrant; PM = Passage Migrant; S = Scarce; + - Present; - - Absent.

S. No.	Order	Family	Scientific Name	Common Name	Status
1.	Squamata	Elapidae	Bungarus caeruleus	Indian Krait	LC
2.	Squamata	Elapidae	Naja naja	Indian Cobra / Spectacled Cobra	LC
3.	Squamata	Colubridae	Oligodon taeniolatus	Streaked Kukri Snake	LC
4.	Squamata	Colubridae	Platyceps rhodorachis	Cliff Racer	LC
5.	Squamata	Colubridae	Platyceps ventromaculatus	Glossy-bellied Racer / Plain's Racer	С
6.	Squamata	Colubridae	Psammophis condanarus	Indian Sand Snake / Oriental Sand Snake	LC
7.	Squamata	Colubridae	Psammophis leithii	Ribbon Snake	LC
8.	Squamata	Colubridae	Ptyas mucosus	Dhaman / Rope Snake	С
9.	Squamata	Colubridae	Spalerosophis diadema	Royal Snake	LC
10.	Squamata	Colubridae	Xenochrophis piscator	Checkered-keel Back	LC
11.	Squamata	Viperidae	Echis carinatus	Saw-scaled Viper	LC
12.	Squamata	Viperidae	Daboia russelii	Russel's Viper	LC
13.	Squamata	Boidae	Eryx johnii	Common Sand Boa	LC
14.	Squamata	Boidae	Eryx conicus	Sand Boa	LC
15.	Squamata	Lacertidae	Acanthodactylus cantoris	Indian Fringe-toed Lizard	С
16.	Squamata	Varanidae	Varanus griseus	Desert Monitor Lizard	LC
17.	Squamata	Varanidae	Varanus bengalensis	Indian Monitor Lizard	LC
18.	Squamata	Uromastycidae	Saara hardwickii	Indian Spiny-tailed Lizard	LC
19.	Squamata	Agamidae	Trapelus megalonyx	Afghan Ground Agama	LC
20.	Squamata	Agamidae	Trapelus agilis	Brilliant Agama / Agile Agama	LC
21.	Squamata	Agamidae	Calotes versicolor	Indian Garden Lizard/Common Tree Lizard	С
22.	Squamata	Eublepharidae	Eublepharis macularius	Fat-tailed Gecko / Pakistani Leopard Gecko	LC
23.	Squamata	Geckonidae	Cyrtopodion kachhensis	Warty Rock Gecko / Kutch Gecko	LC
24.	Squamata	Geckonidae	Cyrtopodion scaber	Keeled Rock Gecko	LC
25.	Squamata	Geckonidae	Crossobamon orientalis	Sindh Sand Gecko	LC
26.	Squamata	Geckonidae	Hemidactylus flavivirdis	Yellow-bellied House Gecko	LC
27.	Squamata	Geckonidae	Hemidactylus brookii	Spotted Indian House Gecko/Brook's Gecko	LC
28.	Squamata	Geckonidae	Hemidactylus leschenaultii	Bark Gecko / Marbled Tree Gecko	LC
29.	Chelonia	Trionychidae	Lissemys punctata	Indian Flap-shell Turtle	С
30.	Testudines	Emydidae	Geoclemys hamiltonii	Spotted Pond Turtle	C
31.	Crocodilia	Crocodylidae	Crocodylus palustris	Marsh Crocodile	LC

Fable 9. List of Reptile	s recorded from	RBOD study areas.
--------------------------	-----------------	-------------------

Legends: C= Common; LC= Less Common

Table 10. List of Amphibians recorded from RBOD study areas.

S. No.	Order	Family	Scientific Name	Common Name	Status
1.	Anura	Ranidae	Euphlyctis cyanophlyctis	Skittering Frog	Common
2.	Anura	Bufonidae	Duttaphrynus stomaticus	Indus Toad	Common

Table 11. List of Fish fauna recorded from RBOD study areas.

S. No.	Order	Family	Scientific Name
1.	Cypriniformes	Cyprinidae	Salmostoma bacaila
2.	Cypriniformes	Cyprinidae	Securicula gora
3.	Cypriniformes	Cyprinidae	Barilius vagra
4.	Cypriniformes	Cyprinidae	Amblypharyngodon mola
5.	Cypriniformes	Cyprinidae	Chela cachius
6.	Cypriniformes	Cyprinidae	Aspidoparia morar
7.	Cypriniformes	Cyprinidae	Esomus danricus
8.	Cypriniformes	Cyprinidae	Barbodes sarana
9.	Cypriniformes	Cyprinidae	Rasbora daniconius
10.	Cypriniformes	Cyprinidae	Catla catla
11.	Cypriniformes	Cyprinidae	Cirrhinus reba

S. No.	Order	Family	Scientific Name
12.	Cypriniformes	Cyprinidae	Cirrhinus mrigala
13.	Cypriniformes	Cyprinidae	Labeo dero
14.	Cypriniformes	Cyprinidae	Labeo calbasu
15.	Cypriniformes	Cyprinidae	Labeo fimbriatus
16.	Cypriniformes	Cyprinidae	Labeo gonius
17.	Cypriniformes	Cyprinidae	Labeo dyocheilus
18.	Cypriniformes	Cyprinidae	Labeo rohita
19.	Cypriniformes	Cyprinidae	Osteobrama cotio
20.	Cypriniformes	Cyprinidae	Puntius ticto
21.	Cypriniformes	Cyprinidae	Puntius chola
22.	Cypriniformes	Cyprinidae	Puntius sophore
23.	Cypriniformes	Cyprinidae	Ctenpharyngodon idella
24.	Cypriniformes	Cyprinidae	Cyprinus carpio
25.	Cypriniformes	Cyprinidae	Hypophthalmichthys molitrix
26.	Cypriniformes	Cyprinidae	Aristchthys nobilis
27.	Clupeiformes	Clupeidae	Gudusia chapra
28.	Osteoglossiformes	Notopteridae	Notopterus notopterus
29.	Osteoglossiformes	Notopteridae	Notopterus chitala
30.	Siluriformes	Bagridae	Aorichthys aor
31.	Siluriformes	Bagridae	Rita rita
32.	Siluriformes	Bagridae	Mystus gulio
33.	Siluriformes	Bagridae	Mystus vittatus
34.	Siluriformes	Bagridae	Mystus bleekeri
35.	Siluriformes	Bagridae	Mystus cavasius
36.	Siluriformes	Sisoridae	Bagarius bagarius
37.	Siluriformes	Sisoridae	Gagata cenia
38.	Siluriformes	Sisoridae	Nangra nangra
39.	Siluriformes	Siluridae	Ompok bimaculatus
40.	Siluriformes	Siluridae	Wallago attu
41.	Siluriformes	Heteropneustidae	Heteropneustes fossilis
42.	Siluriformes	Schilbeidae	Ailia coila
43.	Siluriformes	Schilbeidae	Clupisoma garua
44.	Siluriformes	Schilbeidae	Clupisoma naziri
45.	Siluriformes	Schilbeidae	Eutropiichthys vacha
46.	Beloniformes	Belonidae	Xenentodon cancila
47.	Channiformes	Channidae	Channa marulia
48.	Channiformes	Channidae	Channa punctata
49.	Channiformes	Channidae	Channa striata
50.	Perciformes	Chandidae	Chanda nama
51.	Perciformes	Chandidae	Parambassis baculis
52.	Perciformes	Chandidae	Parambassis ranga
53.	Perciformes	Badidae	Badis badis
54.	Perciformes	Mugilidae	Sicamugil cascasia
55.	Perciformes	Gobidae	Glossogobium giuris
56.	Perciformes	Belontidae	Colisa fasciata
57.	Perciformes	Belontidae	Colisa lalia
58.	Perciformes	Cichlidae	Oreochromis mossambicus
59.	Synbranchiformes	Mastcembelidae	Mastacembelus armatus

DISCUSSION

The water samples of the year 2010 were uncollectable due to flooding in the area as water become diluted. The present study reveals that RBOD is continuously receiving the discharges containing polluted water through three sources viz., municipal wastewater, industrial wastewater and agricultural runoff. The continuous accumulation causes a potential threat to aquatic life. The poisonous metals such as Mercury, Lead, Zinc, Copper, Cadmium and Chromium etc. in the industrial wastes and storm water drainage in the urban areas prove fatal for most living organisms. These toxic materials through water currents in the under surface

water have reached and have polluted most freshwater resources (Abbas, 2011).

In the present work, water samples taken from the RBOD near Keenjhar Lake showed pesticide OC compounds below the Maximum Acceptable Concentration (MAC). The data show 0.001mg/l DDT of OC groups analyzed presently in the ground water of RBOD near Keenjhar Lake. The concentration of these compounds and their continuous accumulation in the benthic deposit and their entry in food chain need to be addressed immediately.

The environmental impacts of OC group DDT pesticide residues and their effect on human health is an important matter of concern. The effect of DDT on estrogen behavior in human suggested the implication of these compounds in breast cancer (Carvalhado *et al.*, 1998). Pesticides that are soluble in both water and fats are generally taken up more quickly by animals and man as the traces of these pesticides with their metabolites and breakdown products are universally present in abiotic and biotic environment (Tiel, 1972). In addition, the proportion of pesticides that is absorbed by the gut depends on the movement of the gut and the rate of way of food stuff through it.

In another study, pesticide residues of deltamethrin, aldrin, dieldrin, DDT and DDE in muscles, fat and liver of three Labeo species of fishes were found in Keenjhar and Haleji Lakes (Saqib *et al.*, 2005).

The increased use of pesticides in a franzy to increase production of crops is also complicating the problem. The increased usage of even the most persistent and toxic chemicals like DDT is also continued (Nasir *et al.*, 1987). The quantity of OC compounds and their metabolites were found in a higher amount in Sindh lakes as reported by Siddiqui (1998). He also noted dieldrin and other OC compounds from muscles and fat bodies of waterbirds on different lakes of Sindh. Detection of pesticide residues deltamethrin, aldrin, dieldrin, DDT, cypermethrin, DDE and melathion of the water samples of Gharo Creek showed no considerable concentration of pesticides (Khan, 2004).

The quantity of OC and OP compounds were estimated above the Maximum Acceptable Concentration in Haleji Lake and below the MAC in Keenjhar Lake as reported by Abbas (2011). During our study, no adverse effects of environmental pollution were found on the aquatic biodiversity except for some minor toxic effects due to the presence of heavy metals in water. All the physicochemical parameter values were observed as per limit of World Health Organization standard. The depletion of Dissolved Oxygen indicated organic pollution harmful for aquatic biodiversity (Khan *et al.*, 2012). The salinity values near Gharo and near Keenjhar were observed high as per limit of World Health Organization standard, but having no adverse effect on aquatic biodiversity. Higher value of salinity presented during summer may be due to evaporation and comparatively low value was recorded during winter and rainy season. The rain water, however, causes dilution, aeration and additional biological activity as the BOD and COD pressure is decreased and solubility level of air in water is increased (Abbas, 2011). The desalination of the RBOD drainage water through treatment plants is not costly because of post-purification benefits for agriculture and adjacent affected wetlands.

It is also marked from these studies that dissolved oxygen content, salinity and pH do not affect the growth of copepods. The population of copepods shows growth pattern which only corresponds with the variation of temperature.

In January and December, beside the other factors, deficiency of nutrient salts due to accumulation is responsible for the decline of population of plankton (Welch, 1952). In summer temperature, increase in predation and downward migration are the factors responsible for the low population. The adults die out soon after breeding, and summer period is the peak of breeding. All these factors probably acting simultaneously are responsible for the extremely low population during May and June (Baqai and Rehana, 1973). During all the study period in pre-monsoon and post- monsoon the populations of copepods have a maximum.

Environmental Problems in RBOD

The RBOD is presently passing across the southern tip of Hadero Lake. For the present alignment there is a risk of pollution of Hadero Lake. The RBOD drain flows very close to Haleji Lake, the distance between RBOD and Haleji Lake is hardly 50 to 100ft. The water level is 20-30ft below the level of the lake area. Since the water level in Haleji Lake would be higher, (average depth 17ft) than that of the Drain. There is a possibility of the lake water spilling over the embankment and flowing into the drain in wet years of excessive rainfall. Due to very short distance from RBOD, Haleji Lake may be affected by the seepage of its water to the drain. Necessary measures have to be adopted to ensure environmental sustainability, safety of Haleji Lake from saline water intrusion and safety of RBOD from spilling of lake waters into RBOD and consequent flooding.

A very undesirable situation is prevailing for the last many years of discharging about 20 to 25 cusecs of untreated industrial wastewater from Kotri and Nooriabad Industrial Area into K.B Feeder, a channel which provides drinking water to Karachi. The logic in favour is the higher dilution rate and those 20 to 25 cusecs after all, is an insignificant volume compared to K.B. Feeder discharge of 10,000 cusecs. Environmentally, this is an unacceptable practice. With the completion of RBOD, the industrial wastewater will be discharged into the drain whose alignment lies between the K.B Feeder and Kotri Industrial Area. This is very significant positive environmental impact as far as saving of K.B Feeder is concerned.

The largest part of the marginal area of the drain is presently surrounded with water lilies like Lotus, Phragmites and Typha along with Mesquites elsewhere. The open water area is dominated by submerged aquatic vegetation filling the whole water profile from bottom to surface. As a result the open area is reducing which is the habitat of many waterbirds. Some agriculture lands close to the marginal area which may in the long run affect the water quality of the water body. Runoff from agricultural fields containing chemical fertilizers triggers pollution. There are some social impacts such as washing of clothes and grazing of cattle. These social impacts may affect and contaminate the water but not to a great extent. Water is available in deep or shallow pools in the drain beds. The drain beds have risen due to sedimentation. At the RBOD area near Keenjhar Lake water is found in stagnant condition and it has resulted in the deterioration of water quality. In the study area, about 20% residents of towns and big villages are having water supply system, whereas remaining residents getting water from hand pumps, canal and river for drinking and domestic use. The villages which are near to the river are having fresh ground water, whereas the water logged area of Thatta ground water is brackish. In Thatta area from Chillya to Gharo residents living near to proposed drain are getting water from K.G. Canal and distributaries and also children and adults doing fishing practice and take bath from this drain water. This polluted water is not suitable for health and may cause diseases. The main health issue that relates to stagnant water (drainage near Keenjhar Lake) is Malaria. Due to using this polluted water, the general health of the majority of respondents was extremely poor. In every village, at least such diseases were described as common. These are Malaria, Common Fever, Diarrhea, Gynecological problems, Eye infection, Typhoid, Skin diseases and Cough.

All the stakeholders and residents are having negative remarks about the RBOD project, because of lack of information and awareness. They are under the impression that the drain will carry the industrial effluent, which will destroy agriculture land, crop and livestock and also would harm human health. The drain will divide their land in two parts. Approach roads from main Highway to RBOD passing through their land/village will destroy the crop lands during the construction phase. A large number of families at least 5,000 will be affected from the construction phase of RBOD. Any big project like RBOD is required for proper planning and compensation requirements for the people to whom it affected. If acceptable compensation and alternative source of property is provided, then it will be become very easy to make this project successful as well as acceptable for the concerned families.

Currently, all the polluted and contaminated water from MNVD is partly flowing into the Manchar Lake and partly being used for irrigation by the local cultivators. The quality of water is marginally suitable for irrigation with potential hazard for the soil, which is harmful to the environment and ecology of the lake, but after the flow of RBOD, it will directly dispose off into the Sea via Gharo and it will be very much beneficial for the environment. It is hoped that the construction of RBOD will save Manchar Lake and surrounding areas and carry the saline drainage water to the Arabian Sea. The discharge of K.G drain into Gharo Creek for the last three decades did not have any significant negative impact on the ecology of Gharo Creek as compared with the discharge of untreated sewage flowing through Malir River into Ghizri Creek and Lyari into Keamari which has significantly impacted the ecology and marine life of these two outfall areas.

Therefore, the construction of RBOD from Sehwan to Sea via Gharo Creek carrying the saline water from northern area drainage units will go a long way off in saving River Indus from permanent damage and is by far one of the very important mitigation measures to protect Manchar Lake and River Indus. River Indus is the life line of Pakistan and Sindh and no cost will be too great to save it from permanent damage and pollution.

Further studies are needed to collect more data for preparing a conservation plan for the management of Right Bank Outfall Drain. There is a need to increase public awareness regarding the importance and implement a monitoring program to provide protection of biodiversity and to enhance public co-operation in the conservation and management of the Drain and the threatened species.

CONCLUSION

On the basis of the present study, it is concluded that the environmentally RBOD project is a step in the right direction to save Manchar Lake and River Indus downstream of Sehwan from salinization and also take care of saline water and channel it into the Sea. The environmental issues likely to cause negative impacts, during construction and post construction era, can be handled with proper mitigation measures. The present study being the first study of its kind, will serve as a baseline data for the future researchers on the biodiversity and environment of the area.

ACKNOWLEDGMENTS

The authors are deeply thankful to Free Software Foundation for using of some bird photos and also thank Mr. Abdur Razzaq Khan for his field surveys support.

REFERENCES

Abbas, D. 2011. Effects of environmental pollution on aquatic vertebrates and inventories of Haleji and Keenjhar Lakes: Ramsar Sites. Ph.D. Thesis. Department of Zoology, University of Karachi.

Ahmed, M. 1995. Elements of training course in coastal oceanography and pollution for coastal zone managers in Pakistan. In: Resorce Volume for Tertiary Level Education and Training in Coastal Zone Management. Eds. May, JE., Ponniah, W. and Pnadanm, M. NETLAP Publication No. 13. UNEP. Bangkok, Thailand. 15-29.

A.P.H.A. 1992. Standard Methods for the Examination of Water and Wastewater. (18th edi.). APHA, Washington, DC, USA.

Auffenberg, W. and Rahman, H. 1991. Studies on Pakistan Reptiles. Pt. I. The genus *Echis* (Viperidae). Bull. Florida Mus. Nat. Hist. 35(5):263-314.

Baqai, IU. and Rehana, I. 1973. Seasonal fluctuation of Fresh-water Copepods of Keenjhar Lake, Sind, and its correlation with physioco-chemical factors. Pakistan J. Zool. 5(2):165-168.

Brower, J., Zar, J. and Ende, C. 1990. Field and Laboratory Methods for General Ecology. Wm. C. Brown Publishers. 2460 Kerper Boulevard, Dubuque, A 52001.

Carvalhado, FP., Nhan, DD., Zhong, C., Tavares, T. and Klaine, S. 1998. Tracking Pesticides in the Tropics. IAEA Bulletin. 40:3.

Curds, CR. 1982. The Ecology and Role of Protozoa in Aerobic Sewage Treatment Processes. Ann. Rev. Microbiol. 36:27-46.

Curds, CR., Gates, MA. and Roberts, DMCL. 1983. British and other Freshwater Ciliated Protozoa, Part II. Cambridge University Press, London.

Edmondson, WT. 1966. Fresh Water Biology, John Wiley and Sons, USA.

Gabol, K., Khan, MZ. and Ghalib, SA. 2005. Some Observation on the Birds and Physio-chemical Parameters of Hadero Lake Sindh. J. Nat. Hist. Wildl. 4(1):121-125.

Grewal, B., Pfister, O. and Harvey, B. 2002. A Photographic Guide to the Birds of India and the Indian Subcontinent including Pakistan, Nepal, Bhutan, Sri Lanka and the Maldives, Singapore: Periplus. Grimmett, R., Inskipp, C. and Inskipp, T. 1998. Birds of the Indian sub-continent. Oxford University Press, Delhi. pp890.

Kazmierczak, K. 2000. A Field Guide to the Birds of India, Sri Lanka, Pakistan, Nepal, Bhutan, Bangladesh and the Maldives. New Delhi, India.

Khan, MZ. 2004. Effect of Pesticides on Amphibians and Reptiles. Exper. J. Zool. India. 7(1):39-47.

Khan, MA., Hany, O., Hashmi, I., Kazmi, QB. and Khan, MA. 2004. Pesticide Pollution of Gharo Creek: A Preliminary Studies. Pakistan Journal of Marine Sciences. 13(1&2):11-14.

Khan, MZ. 2006. Current Status and Biodiversity of Indus Dolphin Reserve and Indus Delta Wetlands (Ramsar Sites). Refereed Proceeding 9th International Riversymposium, Brisbane, Australia. 1-17.

Khan, MZ., Ghalib, SA. and Hussain, B. 2010. Status and New Nesting Sites of Sea Turtles in Pakistan. Chelonian Conservation and Biology. 9(1):119-123.

Khan, MZ., Ghalib, SA., Siddiqui, S., Siddiqui, TF., Farooqi, RY., Yasmeen, G., Abbas, D. and Zehra, A. 2012^a. Current Status and Distribution of Reptiles of Sind. Journal of Basic and Applied Sciences. 8:26-34.

Khan, MZ., Abbas, D., Ghalib, SA., Yasmeen, R., Siddiqui, S., Nazia, M., Zehra, A., Begum, A., Jabeen, T., Yasmeen, G. and Latif, TA. 2012^b. Effects of Environmental Pollution on Aquatic Vertebrates and Inventories of Haleji and Keenjhar Lakes: Ramsar Sites. Canadian Journal of Pure and Applied Sciences. 6(1):1759-1783.

Khan, MZ., Begum, A., Ghalib, SA., Khan, AR., Yasmeen, R., Siddiqui, TF., Zehra, A., Abbas, D., Tabassum, F., Siddiqui, S., Jabeen, T. and Hussain, B. 2012^c. Effects of Environmental Pollutants on Aquatic Vertebrate Biodiversity and Inventory of Hub Dam: Ramsar Site. Canadian Journal of Pure and Applied Sciences. 6(2):1913-1935.

Khan, MZ., Tabbassum, F., Ghalib, SA., Zehra, A., Hussain, B., Siddiqui, S., Yasmeen, G., Gabol, K., Mahmood, N., Khan, IS., Khan, AB., Abbas, D., Jabeen, T., Samreen, N. and Iqbal, MA. 2014. Distribution, Population Status and Conservation of the Birds in Karachi, Sindh, Pakistan. CJPAS. 8(1):2697-2713.

Nasir, N., Mumtaz, M. and Baig, MMH. 1987. Contamination of Paddy Ecosystem with aerially sprayed DDT formulation. Proc. World Environment Day Department of Zoology, University of Karachi June 6, 1987. Zoologica.

Roberts, TJ. 1991-1992. The Birds of Pakistan. Oxford University Press, Karachi.

Roberts, TJ. 1997. The Mammals of Pakistan. (Revised edi.), Oxford University Press Karachi, Pakistan.

Roberts, TJ. 2005^a. Field Guide to the Small Mammals of Pakistan. Oxford University Press Karachi. pp280.

Roberts, TJ. 2005^b. Field Guide to the Large and Medium Sized Mammals of Pakistan. Oxford University Press Karachi. pp260.

Saqib, TA., Naqvi, SNH., Siddiqui, PA. and Azmi, MA. 2005. Detection of Pesticide Residues in muscles, fat and liver of three species of *Labeo* found in Karli and Haleji Lakes. J. Environ. Biol. 26:4333-438.

Siddiqui, PA. 1998. Bioecology of Wetlands of Lower Sindh with reference to Avifauna and Organophosphate Pollution. Ph.D. Thesis, Department of Zoology, University of Karachi. (unpublished).

Tiel, NV. 1972. Pesticides in Environment and Food. Environmental Quality and Safety. Academic Press Inc. New York, USA. 1:180-189.

Welch, SP. 1952. Limnology. New York, USA.

WHO. 1982. Examination of Water for Pollution Control. World Health Organization. Regional Office for Europe. 203-204.

WHO. 1993. Guideline for Drinking Water Quality. World Health Organization. Geneva, Switzerland.

Yahya, M. 2007. The Lost Paradise (Manchar Lake). Proceedings of Taal: The 12th World Lake Conference. 1397-1407.

Received: Oct 12, 2013; Revised: Jan 16, 2014; Accepted: Jan 25, 2014